

Grado de Ingeniería Electrónica de Comunicaciones

Curso 2025-2026

Ficha de la asignatura:	Física II					Código	805965	
Materia:	Física			Módulo:	Formación Básica			
Carácter:	Obligatorio			Curso:	1°	Semestre: 2		2°
Créditos (ECTS)	7.5		5		2.5			-
Presencial	-	Teóricos	32 %	Problemas	32 %	Laborator	rio	-
Horas Totales			43		23			-

Profesor Coordi-	Prado Martín N	Dpto:	FT			
nador:	Despacho:	03.314.0	e-mail	prac	domm@u	ıcm.es

Grupo	Profesores	T/P*	Dpto.	e-mail
Único	Prado Martín Moruno	T/P	FT	pradomm@ucm.es

^{*:} T: teoría, P: prácticas

Grupo	Horarios de clases			Tutorico (lugar y hororico)		
	Día	a Horas Aula		Tutorías (lugar y horarios)		
Único	L J V	09:00 - 11:00 09:00 - 10:30 10:00 - 11:30	M3	Despacho 03.314.0 Semestre 1: L, X, 14:00 - 15:30 Semestre 2: J, V, 12:00 - 13:30		

(3h no pres.): Horas de tutoría no presenciales a través de correo, campus virtual, ...

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

- Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas, y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.
- Iniciarse en la formulación y resolución de problemas físicos sencillos, identificando los principios físicos relevantes y usando estimaciones de órdenes de magnitud.
- Consolidar la comprensión de las áreas básicas de la Física a partir de la observación, caracterización e interpretación de fenómenos y de la realización de determinaciones cuantitativas en experimentos prediseñados.

Breve descripción de contenidos

Electromagnetismo, Ondas, conceptos de Óptica Física, Termodinámica e introducción a la Física Cuántica.

Conocimientos previos necesarios

Los adquiridos de Matemáticas y Física en los cursos Bachillerato. Física I

Programa de la asignatura

1. Inducción electromagnética.

Inducción electromagnética: ley de Faraday. Autoinducción e inducción mutua. Transformadores. Energía magnética. Circuitos de corriente continua. Circuitos de corriente alterna: conceptos básicos. Corriente de desplazamiento: ecuaciones de Maxwell.

2. Movimiento ondulatorio.

Tipos de ondas. Magnitudes características. Ecuación de ondas. Energía y potencia de una onda. Velocidad de fase y velocidad de grupo. Interferencia de ondas.

3. Ondas electromagnéticas.

Ondas planas en el vacío. Energía y momento. Ondas electromagnéticas en la materia. El espectro electromagnético. Radiación de una carga oscilante.

4. Conceptos básicos de óptica física.

Reflexión y refracción. Dispersión. Polarización. Difracción.

5. Introducción a la física cuántica.

Cuantos de energía. Efecto fotoeléctrico. Efecto Compton. Dualidad onda-partícula. Principio de incertidumbre. Ecuación de ondas de Schrödinger. El electrón en el espacio libre. El pozo de potencial de paredes infinitas. El átomo: niveles de energía atómicos. Emisión y absorción de radiación por la materia.

6. Termodinámica.

Calor y temperatura: Temperatura y equilibrio térmico. Ley de los gases ideales. Teoría cinética de los gases. Concepto de calor. Calor específico. Mecanismos de transferencia de calor. Primer principio y Segundo Principio de la Termodinámica.

Bibliografía ordenada alfabéticamente

Básica

- M. Alonso y E. J. Finn, "Física". 1995 Addison-Wesley Iberoamericana.
- R. A. Serway, "Física", 1er vol., 4a Ed. (McGraw-Hill, Madrid, 2001).
- P. A. Tipler y G. Mosca, "Física", 1er vol., 6a Ed. (Reverté, Barcelona, 2010).
- F. W. Sears, M. H. Zemansky, H. D. Young y R. A. Freedman and A. Lewis Ford, "Física universitaria" (11^a Ed.) (Pearson Educación, Madrid 2004).

Complementaria

- R. P. Feynman R.P., Leighton R.B. y Sands M., "Física", 1987, Ed. Addison Wesley
- A. Fernández Rañada, "Física Básica", (Alianza, Madrid, 2004).
- S. M. Lea y J. R. Burke, "La Naturaleza de las cosas", (Paraninfo, 2001).
- C. Sánchez del Río, "Los principios de la física en su evolución histórica", (Ed. Instituto de España, Madrid, 2004).

Recursos de Internet

En Campus Virtual de la UCM: http://www.ucm.es/campusvirtual

Samuel J. Ling, William Moebs y Jeff Sanny, University physics. Volume 2 and 3, Rice University, Houston, Texas, 2010. Acceso online: https://openstax.org/details/books/university-physics

Metodología

Se desarrollarán las siguientes actividades formativas:

- Lecciones de teoría donde se explicarán los principales conceptos de la materia, incluyéndose ejemplos y aplicaciones (3 horas por semana).
- Clases prácticas de problemas y actividades dirigidas (1,5 horas por semana).

En las lecciones de teoría se utilizará la pizarra y proyecciones con ordenador. Ocasionalmente, estas lecciones podrán verse complementadas con vídeos o prácticas virtuales, que serán proyectadas en el aula.

Se suministrarán a los estudiantes series de enunciados de problemas con antelación a su resolución en la clase, que los encontrarán en el campus virtual.

Como parte de la evaluación continua, los estudiantes tendrán que realizar cuestionarios de ejercicios y se fomentará su participación activa en el aula, especialmente en las clases de problemas.

Evaluación

Realización de exámenes (N_{Final})

Peso:

70 %

Se realizará un examen parcial (aproximadamente a mediados del semestre) y un examen final. El examen parcial tendrá una estructura similar al examen final. La calificación final, relativa a exámenes, N_{Final} , se obtendrá de la mejor de las opciones:

$$N_{Final} = 0.3 \cdot N_{Ex_Parc} + 0.7 \cdot N_{Ex_Final}$$

 $N_{Final} = N_{Ex\ Final}$

donde N_{Ex_Parc} es la nota obtenida en el examen parcial y N_{Ex_Final} es la calificación obtenida en el examen final, ambas sobre 10.

Para la realización de los exámenes, se podrá consultar una hoja resumen elaborada por cada persona.

Otras actividades (A)

Peso:

30 %

Cuestionarios de ejercicios entregados a lo largo del curso realizados de forma individual. Participación en clases.

Calificación final

La calificación final será la mejor de las opciones

$$C_{Final} = 0.7 \cdot N_{Final} + 0.3 \cdot A$$

 $C_{Final} = N_{Final}$

donde A corresponde a las calificaciones de las actividades de evaluación continua y N_{Final} es la correspondiente a la realización de exámenes.

Para superar la asignatura C_{Final} debe ser mayor o igual que 5 y N_{Final} mayor o igual que 4. Si no se alcanzase un 4 en N_{Final} , $C_{Final} = N_{Final}$.

La calificación de la convocatoria extraordinaria se obtendrá siguiendo exactamente el mismo procedimiento de evaluación.